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Aims Generally, optical satellite images are used to produce a land use map. Due to spectral 
mixing, these data can affect the accuracy of land use classifications, especially in areas with 
diverse vegetation.
Materials & Methods In the present study, in order to achieve the correct land use classification 
in a mountainous-forested basin, four Landsat 8 thermal images were used with a few additional 
information (Normalized Difference Vegetation Index (NDVI), Digital Elevation Model (DEM), 
slope angle and slope aspect) along with optical data and data of multi-temporal images.
Findings Results showed that thermal data, slope angle and DEM have a significant role in 
increasing the accuracy of land use classification, so that they increase the overall accuracy by 
about 3-10% from late spring to the beginning of autumn. Among the data used, slope angle 
and elevation data have a significant role in increasing the accuracy of agricultural classes. The 
total accuracy and Kappa coefficient in land use maps obtained from monotemporal images in 
the wet season (late spring; 83.93 and 0.82) and early summer (83.79 and 0.81)) are more than 
the dry season (late summer; 81.25 and 0.79) and early autumn).
Conclusion Generally, the highest total accuracy among monotemporal images generated from 
optical data is about 83.95%, while the application of thermal and additional data along with 
optical data and the combination of monotemporal images of the wet season, the accuracy of 
the information multitemporal increased to 91.60% of the land use map.
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Introduction	
Land	 use	 classification	with	 satellite	 images	 is	
widely	used	 in	remote	sensing	data	processing	
by	 which	 meaningful	 thematic	 maps	 are	
produced	 from	 satellite	 images	 [1],	 and	 the	
combination	 of	 remote	 sensing	 (RS)	 and	
geographic	 information	 system	 (GIS).	 Due	 to	
increasing	 improvements	 in	 remote	 sensing	
and	 geographic	 information	 system,	 exploiting	
these	methods	 can	be	 considered	as	 a	 suitable	
option	 to	 provide	 spatial	 and	 descriptive	
information	 [2]	 and	 application	 provides	 a	
powerful	 and	 cost‐effective	 approach	 for	 land‐
use	 mapping	 [2‐5].	 The	 up‐to‐date	 and	 reliable	
information	 from	 the	 land	 use	 map	 and	 their	
land	 cover	dynamics	provides	key	 information	
to	the	managers,	which	help	in	adopting	proper	
managerial	 decisions	 in	 watershed	
management	[3].	However,	achieving	reasonable	
results	 is	 not	 easy	 due	 to	 the	 data	 limitation,	
data	 type,	 pre‐processing	 of	 satellite	 images,	
classification	 methods	 and	 land	 use	
complexities	and	land	cover	types	[6‐8].	Different	
methods	of	classification	are	presented	over	the	
past	 three	 decades,	 many	 studies	 have	 been	
conducted	 to	 verify	 the	 accuracy	 of	
classification	methods,	and	as	a	result,	new	and	
improved	 classification	 algorithms	 were	
developed.	 For	 example,	 over	 recent	 decades,	
Maximum	 Likelihood	 Classifier	 (MLC)	 and	
Artificial	 Neural	 Network	 (ANN)	 have	 been	
popularly	 used,	 and	 among	 new	 algorithms,	
Support	Vector	Machines	(SVM)	[9]	is	commonly	
applied.	
Similar	 spectral	 properties	 of	 the	 type	 of	 land	
cover	 make	 the	 classification	 process	 more	
complicated.	This	is	very	evident	in	agricultural	
applications,	 especially	 when	 mono‐temporal	
satellite	 imagery	 is	 used	 [10].	 For	 example,	
heterogeneous	 regions	 due	 to	 the	 presence	 of	
small	 pieces	 of	 several	 land	 use,	 dispersal	 of	
urban	 areas,	 high	 reflection	 of	 very	 dry	 soils	
and	 areas	 with	 limestone	 which	 affects	
vegetarian	cover	and	ultimately	in	areas	where	
mixed	dry	farming	exists,	the	utilization	of	one	
image	may	make	 the	 land‐use	analysis	difficult	
[11].	
The	 application	 of	 mono‐temporal	 optical	
remote	 sensing	 data	 has	 been	 widely	 used	 in	
many	 studies	 because	 of	 accelerating	 the	
individual	image	processing	[2,	3,	6,	9,	12‐14].	
In	 order	 to	 overcome	 such	 difficulties,	 various	
strategies	 should	 be	 used	 in	 land	 use	
classification.	 In	 some	 studies,	 for	 example,	

multi‐temporal	images	[13‐16],	and	in	some	other	
studies,	 a	 combination	 of	 secondary	 data	 such	
as	 physiographic	 factors	 (elevation,	 slope,	 and	
soil	 type)	 and	 vegetation	 indices	 (NDVI	 and	
NDWI)	 [2,	 17,	 18],	 and	 in	 other	 researches,	 a	
combination	 of	 secondary	 data	 and	 multi‐
temporal	 images	 [10,	 19,	 20],	 are	 employed.	
Accordingly,	 many	 researchers	 have	 increased	
the	 accuracy	 of	 land	 use	 classification	 using	
satellite	imagery	[10,	21‐25].	
	

Using	 these	 strategies,	 the	 obtained	 accuracy	
increases	 compared	 with	 land	 use	 and	 land	
cover	maps	 generated	 from	 the	optical	 data	of	
the	 mono‐temporal	 images.	 The	 major	
challenge	in	land	use	classification	using	mono‐
temporal	 multidimensional	 data	 is	 that	
uncertainty	 arises	 from	 the	 differences	 of	
changes	 in	different	 factors	 over	 time,	 such	 as	
different	 phenological	 periods	 or	 mixed	
vegetation	 changes,	 different	 shapes	 and	
textures	 [18].	 Therefore,	 the	 spectral	 data	 of	 a	
point	at	a	given	time	of	satellite	images	cannot	
provide	 comprehensive	 information	 about	 the	
phenological	 period	 of	 vegetation	 and	 the	
temporal	 characteristics	 of	 each	 land	 use	 [16].	
Hence,	 a	 land	 use	 classification	 at	 an	
inappropriate	 time	 will	 be	 accompanied	 by	
more	 plural	 [26].	 Since	 the	 multi‐temporal	
satellite	 imagery	provides	spectral	 information	
of	various	phenological	stages	of	vegetation,	so	
the	 use	 of	 multi‐time	 images	 allows	 for	 the	
separation	 of	 different	 vegetation	 coverage	
with	 similar	 spectral	 properties	 [17].	 In	 fact,	
changes	 due	 to	 different	 seasons'	 vegetation	
coverage	 are	 included	 in	 multi‐temporal	 land	
use	 classification,	which	 can	be	 very	helpful	 in	
understanding	the	land	use	dynamics	in	natural	
resources	 [16].	 Thus,	 besides	 its	 application	 for	
increasing	 the	 agricultural	 products'	 and	other	
plant	 species'	 classification	 accuracy,	 it	 is	
suitable	 to	 use	 multi‐temporal	 data	 for	
separating	agricultural	vegetation	from	natural	
vegetation	coverage	 [11]	and	have	 an	 important	
role	 in	 resources	 management	 and	 helps	
managers	to	better	planning	of	land	use	[27].	
	

Several	 studies	 have	 been	 conducted	 applying	
different	strategies	to	enhance	accuracy	of	land	
use	maps,	however,	 there	 is	no	available	study	
on	 using	 several	 strategies	 at	 once	 as	 an	
integrated	 approach	 to	 enhance	 accuracy	 of	
land	 use	 maps.	 Therefore,	 the	 present	 study	
aimed	 to	 apply	 the	 most	 commonly	 used	
strategies	 together	 and	 investigate	 their	 effect	
on	the	enhancement	of	land	use	maps’	accuracy	
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individually	 and	 together.	 The	 strategies	 are	
described	as	follows:	
1‐	Mono‐temporal	classification	by	optical	data	
2‐	Mono‐temporal	 classification	 by	 optical	 and	
thermal	data	
3‐	Mono‐temporal	classification	by	optical	data,	
thermal	and	secondary	data	(NDVI,	DEM,	slope	
and	slope	aspect)	
4‐	Multi‐temporal	classification	by	optical	data	
5‐	 Multi‐temporal	 classification	 by	 optical,	
thermal	and	secondary	data	(NDVI,	DEM,	slope	
and	slope	aspect)	
Study	area	
The	Talar	Watershed	with	an	area	of	1,765km2	
is	 located	 in	northern	 Iran	 at	 the	 geographical	
location	 of	 52°35´44"	 to	 53°23´19"	 eastern	
longitude	 and	 35°44´7"	 to	 36°18´20"	 northern	
latitude.	 The	 Talar	 Watershed	 is	 drained	 by	 a	
river	called	"Talar"	which	is	shown	in	Figure	1.	
The	 average	 elevation	 of	 the	 watershed	 is	
1978m	above	sea	level,	and	the	average	slope	is	
40%.	Wet	air	flow	inclination	in	heights	due	to	
the	 fact	 that	 the	watershed	 is	 located	 adjacent	
to	 the	 Caspian	 Sea,	 causing	 orographic	
precipitation. 

	

	
Figure	1)	Location	of	the	Talar	Watershed	in	the	north	of	
Iran	

	
Materials	and	Methods	
Satellite	data	
Landsat	series	 images	are	a	reliable	source	 for	
examining	 land	 cover	 variations	 due	 to	 the	 30	
meter	spatial	resolution	and	the	185	swath	and	
the	16‐day	imaging	cycle	[15].	On	the	other	hand,	
access	to	high‐resolution	satellite	data	is	mostly	
limited	due	to	their	high	cost.	Hence	because	of	
the	 free	 access	 to	 the	 Landsat	 image	 archive,	

these	data	are	one	of	the	best	available	satellite	
data	 that	 can	 provide	 significant	 solutions	 for	
land	 cover	 mapping	 [28].	 In	 the	 present	 study,	
the	TIRS‐OLI	Landsat	multi‐temporal	images	of	
Landsat	 8	 in	 non‐cloudy	 conditions	 [19]	 were	
obtained	from	USGS	in	2017.	Besides	spectral	of	
1	to	7	(1:	Aerosol/coastal;	2:	Blue;	3:	Green;	4:	
Red;	 5:	 Near‐infrared;	 6	 and	 7:	 Short	 wave	
infrared),	as	well	as	thermal	10	(TIR1:	Thermal	
infrared)	 for	 land	 use	 classification	were	 used	
(Table	1).	

	
Table	1)	Specifications	of	Landsat	8	satellite	images	used	
in	the	study	

Sensor	Date	Path	Row	

OLI-IRS	

31	May	2017	163	35	
2	Jul	2017	163	35	
20	Sep	2017	163	35	
22	Oct	2017	163	35	

	
Image	Pre‐processing	
Radiometric	correction	is	necessary	to	calculate	
the	 Normalized	 Difference	 Vegetation	 Index	
(NDVI)	 [18,	 26].	 Therefore,	 for	 radiometric	
correction,	 the	 DN	 values	 of	 the	 image	 were	
calibrated	 to	 radiation	 [2,	 19],	 then	 the	
atmospheric	 correction	 was	 performed	 using	
the	FLAASH	module	[14,	19,	21,	27].	
Ancillary	data	
Land	 use	 is	 influenced	 by	 various	 parameters,	
so	 that	the	spectral	 information	along	with	the	
characteristics	 data	 of	 the	 Earth	 such	 as	
elevation,	 slope,	 and	 slope	 aspect	 considerably	
increases	 the	 accuracy	 of	 the	 land	 use	
classification	 [10,	 17,	 19,	 28].	 This	 information,	
especially	 in	 mountainous	 regions,	 where	
vegetation	 distribution	 is	 closely	 related	 to	
topography,	 plays	 an	 important	 role	 in	
increasing	 the	 accuracy	 of	 vegetation	 cover	
classification	 [29].	 The	 Talar	 Watershed	 is	 a	
mountainous	 area	where	 irrigated	 agricultural	
lands	 are	 largely	 spread	 along	 the	 rivers,	
especially	 the	 main	 river,	 with	 lands	 of	 lower	
elevations	 and	 slopes.	 In	 the	 study	 area,	 forest	
cover	can	be	often	seen	up	to	2500m	a.s.l.	level,	
and	at	higher	altitudes,	due	to	reduced	rainfall,	
rangeland	cover	is	a	substitute	for	forest	cover.	
Therefore,	 in	 the	 present	 study,	 using	 ASTER	
derived	 DEM	 (30m),	 slope	 aspect	 and	 slope	
information	 is	 extracted,	 and	 using	 spectral	
information	 of	 red	 and	 infrared	 bands	 NDVI.	
The	brightness	 temperature	was	considered	as	
ancillary	 information	 factors	 for	 land	 use	
classification	(Figure	2).	
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Figure	2)	 Optical	 bands	with	a	 natural	 color	 combination	 (A,	 B,	 C,	 and	D),	brightness	 temperature	 obtained	 from	 the	
thermal	bond	(A1,	B1,	C1,	and	D1),	NDNI	index	(A2,	B2,	C2,	and	D2)	
	
Classification	
Maximum	 Likelihood	 Classification	 (MLC)	
algorithm	is	one	of	the	most	popular	supervised	
classification	 algorithms	 widely	 used	 for	 land	
use/land	cover	(LULC)	mapping	[13,	16,	19,	30].	The	
MCL	 algorithm	 examines	 the	 covariance	 and	

variance	 of	 spectral	 response	 patterns	 of	 a	
group	when	classifying	an	unknown	pixel.	Thus,	
it	 is	 assumed	 that	 the	 distribution	 of	
cloudpoints	 that	 comprise	 the	 training	 data	 of	
that	group	is	Gaussian,	i.e.	a	normal	distribution	
[30].	
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Based	 on	 this	 assumption,	 the	 distribution	
behavior	 of	 each	 group	 with	 the	 spectral	
response	 pattern	 can	 be	 described	 with	 the	
mean	vector	 and	covariance	matrix.	Therefore,	
each	 pixel	 is	 classified	 into	 a	 class	 with	 the	
highest	likelihood,	which	can	be	categorized	as	
an	index	of	certainty,	while	the	classification	of	
pixels	with	 the	maximum	 likelihood	below	 the	
threshold	is	rejected	[31].	Regarding	the	spectral	
properties	 of	 images	 and	 recognition	 of	 land	
use	 in	 the	 studied	 area	 [3],	 eight	 land	 use	
categories	 including	residential	 land	(RL),	Arid	
Land	 (BL),	 Dryland	 agriculture	 (DF),	 irrigated	
agriculture	(IF),	poor	range	(R3),	medium	range	
(R2),	 medium	 forests	 (F2),	 and	 good	 forests	
(F1)	were	considered.	
Multi‐temporal	method	
The	LULC	map	derived	from	the	MLC	algorithm	
in	single‐stroke	 images	due	 to	 the	similarity	of	
the	spectral	reflection	of	the	various	classes	has	
errors	 in	 which	 the	 pixels	 of	 some	 uses	 have	
similar	 spectral	 reflections	 that	 interfere	 with	
forest,	 agricultural	 land	 and	 range	 and	 are	
categorized	 incorrectly	 [2,	 14].	 This	
misclassification	 is	 related	 to	 the	 phenological	
period	of	the	vegetation,	and	the	accuracy	of	the	
map	 is	 different	 in	 different	 seasons	 and	
months	 of	 a	 year	 [19,	 21].	 The	 watershed	 has	
diverse	 LULC,	 but	 the	 time	 share	 of	 the	
phenological	 period	 of	 plants	 of	 different	 land	
use	in	some	seasons	of	the	year,	such	as	the	late	
spring,	 reflects	 the	 spectrum	 of	 rangeland,	
agriculture	and	 forest	cover,	which	has	a	more	
spectral	mix.	
So,	using	single‐shot	 image	classification,	 there	
is	 no	 access	 to	 the	 most	 accurate	 use	 classes.	
For	 this	 reason,	 combining	 multi‐temporal	
image	 information	 can	 be	 useful	 in	 increasing	
the	 accuracy	 of	 the	 classifications.	 For	 this	
purpose,	 in	 the	 present	 study,	 the	 first	 four	
classes	of	images	were	classified	as	late	spring,	
early	summer,	late	summer,	and	early	fall	with	
or	 without	 ancillary	 information.	 Then,	 from	
the	 four	 land	 use	 maps	 produced,	 two	 maps	
with	 the	 highest	 accuracy	 were	 used	 to	
combine	 the	 information	 as	 well	 as	 the	
preparation	of	a	multi‐temporal	land	use	map.	
Accuracy	assessment	
One	 of	 the	 most	 common	 methods	 for	
evaluating	classification	accuracy	is	through	the	
confusion	 matrix.	 Accordingly,	 511	 ground	
truth	 samples	 were	 made	 using	 GPS.	 To	
compare	the	results	of	classification	and	ground	
truth,	 the	 producer	 accuracy	 criteria,	 user	

accuracy,	 overall	 accuracy,	 and	 Kappa	
coefficient	 obtained	 from	 the	 confusion	matrix	
were	 used	 [32].	 The	 producer	 accuracy	 is	 to	
measure	 the	 correct	 classification	 and	 the	
probability	 of	 a	 pixel	 being	 classified	 in	 the	
same	 class,	 while	 the	 user	 accuracy	 is	 the	
measure	 of	 the	 reliability	 of	 the	map	 for	 each	
class	 and	 the	 probability	 that	 a	 given	 class	 on	
the	ground	will	be	 located	 in	the	same	class	 in	
the	classified	image	[33].	The	overall	accuracy	is	
the	 correct	 percentage	 of	 classified	pixels,	 and	
the	 Kappa	 coefficient	 is	 an	 accuracy	
measurement	method	that	evaluates	the	degree	
of	 agreement	 compared	 to	 the	 random	
classification	 [34]	 and	 represents	 the	 overall	
accuracy	 agreement	 with	 the	 real	 state	 of	
nature	 [14].	 Figure	 3	 presents	 the	 general	
flowchart	of	the	research	steps.	

	

	
Figure	3)	Flowchart	of	research	methodology	
 

Findings	
Evaluation	of	single‐shot	classification	
The	 results	 of	 the	 classification	of	 images	with	
optical	 data	 showed	 that	 the	 classification	
accuracy	decreases	from	late	spring	to	early	fall	
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(Table	 2),	 so	 that	 the	 image	 of	 31st	 May	 2017	
with	 a	 total	 accuracy	 of	 83.95	 and	 a	 Kappa	
coefficient	 of	 0.8158	 had	 the	 highest	
classification	 accuracy	 among	 the	most	 related	
images	 and	 the	 images	 of	 22nd	 October	 2017	
with	 a	 total	 accuracy	 of	 74.22	 and	 a	 Kappa	
coefficient	 of	 0.7042	 had	 the	 lowest	
classification	accuracy.	
The	 results	 of	 the	 classification	of	 images	with	
optical	 data	 showed	 that	 the	 classification	
accuracy	 decreases	 from	 late	 spring	 to	 early	
fall.	By	adding	the	brightness	temperature	data	
to	the	total	optical	data	of	the	images	and	land	
use	 classification,	 the	 overall	 accuracy	 and	
Kappa	index	increased	in	images	except	for	the	
late	 spring.	 As	 the	 overall	 classification	
accuracy	of	 images	of	 July	2nd,	 September	20th,	
and	 October	 22nd	 with	 optical	 and	 thermal	
information	 relative	 to	 the	 classification	 of	
optical	 data	 is	 increased	 (Table	 3).	 The	 NDVI	
index,	with	the	exception	of	the	late	spring	(31st	
May),	on	other	dates,	has	reduced	classification	
accuracy.	 By	 adding	 DEM	 to	 the	 total	 optical	
and	 thermal	 data	 in	 all	 images	 (late	 spring	 to	
early	 fall),	 the	 accuracy	 of	 the	 classification	
increases.	 The	 slope	 information	 after	 thermal	
information	has	a	significant	role	 in	 increasing	
the	 accuracy	 of	 classification	 in	 all	 images,	 as	
the	overall	accuracy	in	the	early	spring	and	late	
summer	increased	by	about	2.5%.	In	total,	with	
the	 addition	 of	 ancillary	 information	 to	 the	
optical	 data,	 the	 total	 accuracy	 increased	
(Figure	4).	
Evaluation	 of	 multi‐temporal	 classification	
accuracy	
Land	 use	 maps	 of	 the	 aforementioned	 dates	
were	merged	and	areas	 that	had	different	 land	
uses	in	the	two	maps	were	decided	in	terms	of	

more	 appropriate	 class	 by	 examining	 them	 in	
Google	 Earth.	 Investigation	 of	 the	 variation	
matrix	of	land	use	map	of	the	mentioned	dates	
obtained	 from	 the	 optical	 data	 indicated	 that	
the	maximum	change	area	(4.43km2)	relates	to	
the	 areas	 in	 the	 31st	May	map	 related	 to	 poor	
rangeland	 (R3)	 and	 in	 2nd	 July	 map	 it	 was	
categorized	 as	 DF	 (Table	 4).	 Investigating	 the	
relevant	 areas	 in	 Google	 Earth	 showed	 that	
these	 areas	 are	 mostly	 farmed	 with	 as	 DF,	 so	
the	 final	 class	of	 these	 areas	 is	DF.	After	 these	
areas,	 areas	with	 an	 area	 of	 35km2	on	2nd	 July	
were	 categorized	 as	 R3,	 and	 on	 the	 31st	 May	
were	 categorized	 as	 IF.	 Examining	 these	 areas	
with	Google	Earth	showed	that	these	areas	are	
mostly	R3.	Areas	with	an	area	of	30km2	mapped	
on	31st	May	and	2nd	 July	were	classified	as	DF	
and	R3,	respectively.	
The	 land	 use	 change	 matrix	 of	 the	
aforementioned	 dates,	 using	 the	 total	 optical,	
thermal	 and	 additional	 information	 showed	
that	 the	most	 significant	 changes	with	 an	 area	
of	 48km2	were	 those	 of	 the	 areas	described	 in	
the	31st	May	map	BL	and	in	the	2nd	July	map	is	
classified	 as	 R3	 (Table	 5).	 Examining	 these	
areas	 in	 Google	 Earth	 shows	 that	 the	 correct	
use	 of	 these	 areas	 is	 R3.	 After	 these	 areas,	 an	
area	 of	 45km2	 mapped	 on	 31st	 May	 was	
classified	as	R2	and	on	 the	2nd	 July	map	as	 the	
medium	 forest	 class.	 Checking	 the	 accuracy	 of	
these	areas	with	Google	Earth	shows	that	these	
areas	are	mainly	in	R2	class.	The	area	of	29km2	
in	 map	 of	 31st	 May	 was	 classified	 as	 R3	 class	
and	 in	 the	2nd	 July	map	 it	was	classified	as	BL,	
which	 using	 Google	 Earth	 the	 R3	 was	
considered	 to	 be	 a	more	 correct	 class	 (Figure	
5).	

	
Table	2)	Evaluation	of	land	use	accuracy	by	adding	parameters	to	optical	data	(O:	Optical;	T:	Thermal;	N:	NDVI;	D:	DEM;	
S:	Slop;	A:	Slope	aspect)	

O,	T,	D,	S	
and	A 

O,	T,	D	and	S O,	T	and	D O,	T	and	N O	and	T O	Dataset 

05/31/2017 
87.50 87.89 85.49 84.38 83.79 83.95 Overall	Accuracy 
0.85	0.86	0.83	0.82	0.8143	0.8158 Kappa	
						07/02/2017	

89.45	89.65	87.70	85.74	86.33	83.79	Overall	Accuracy 
0.87	0.88	0.85	0.83	0.84	0.81	Kappa 

09/20/2017	
87.89	87.70	85.16	83.79	84.77	81.25	Overall	Accuracy 
0.86	0.85	0.82	0.81	0.82	0.78	Kappa 

10/22/2017	
83.79	83.01	81.25	77.93	79.10	74.22	Overall	Accuracy 
0.81	0.80	0.78	0.74	0.76	0.70	Kappa 
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Table	3)	Rate	of	increase	in	overall	accuracy	and	Kappa	by	adding	parameters	(O:	Optical;	T:	Thermal;	N:	NDVI;	S:	Slop;	
A:	Slope	aspect)	

O,	T,	D,	S	and	A O,	T,	D	and	S O,	T	and	D O,	T	and	N O	and	T Dataset 
05/31/2017 

‐0.39	2.4	1.7	0.59	‐0.16	Overall	Accuracy 
‐0.004	0.022	0.024	0.006	‐0.001	Kappa	

					07/02/2017	
‐0.2	1.95	1.37	‐0.59	2.54	Overall	Accuracy 
‐0.002	0.022	0.015	‐0.006	0.029	Kappa 

09/20/2017	
0.19	2.54	0.39	‐0.98	3.52	Overall	Accuracy 
0.002	0.029	0.004	‐0.011	0.040	Kappa 

10/22/2017	
0.78	1.76	2.15	‐1.17	4.88	Overall	Accuracy 
0.008	0.020	0.024	‐0.013	0.056	Kappa 

	

	
Figure	4)	Single‐shot	land	use	map	with	optical	data	(A,	B,	C,	and	D)	and	total	optical,	thermal	and	additional	data	(A1,	B1,	
C1,	and	D1)	

	
Table	4)	Land	use	change	matrix	(31st	May;	column	and	2nd	July;	row)	using	optical	information	(km2)	

31‐May‐2017	

2
‐J
u
ly
‐2
01
7	

LU/LC	Classes	 RL	 BL	 DF	 IF	 R3	 R2	 F2	 F1	 Row	Total	 Class	Total	
RL	 24.86	 3.11	 2.36	 5.01	 1.33	 0.6	 0.46	 0	 37.73	 37.75	
BL	 1.11	 2941.39	 6.88	 10.19	 20.05	 0.13	 0.03	 0	 2979.77	 2979.95	
DF	 1.85	 13.67	 39.24	 5.19	 43.59	 5.88	 0.38	 0	 109.81	 109.83	
IF	 6.16	 6.7	 20.44	 82.95	 34.83	 19.78	 12.65	 5.2	 188.7	 188.97	
R3	 0.92	 28.41	 30.25	 15.06	 312.83	 7.45	 0.29	 0	 395.21	 395.37	
R2	 0.55	 0.01	 22.89	 8.85	 16.61	 84.3	 16.35	 0.03	 149.59	 149.59	
F2	 0.12	 0.17	 6.78	 10.36	 6.03	 22.97	 190.08	 3.49	 240	 240	
F1	 0.04	 0	 0.14	 5.46	 0	 1.2	 5.79	 376.9	 389.52	 389.52	
Class	Total	 35.62	 2993.45	 128.97	 143.05	 435.27	 142.32	 226.02	 385.62	 	 	
Class	Changes	 10.76	 52.07	 89.73	 60.11	 122.44	 58.01	 35.95	 8.72	 	 	
Image	Difference	 2.13	 ‐13.5	 ‐19.15	 45.92	 ‐39.9	 7.27	 13.97	 3.9	 	 	
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Table	5)	Land	use	change	matrix	date	31st	May	(column)	and	2nd	July	(row)	using	total	optical,	thermal,	and	additional	
information	(per	km2)	

31‐May‐2017	

2
‐J
u
ly
‐2
01
7	

LU/LC	Classes	 RL	 BL	 DF	 IF	 R3	 R2	 F2	 F1	 Row	Total	 Class	Total	
RL	 27.7	 2.82	 3.73	 4.02	 5.01	 2.98	 1.58	 0.16	 47.99	 48.08	
BL	 1.98	 248.29	 0.84	 2.39	 29.05	 0.05	 0.13	 0	 282.75	 282.98	
DF	 3.63	 8.24	 39.79	 5.61	 22.37	 4.02	 1.68	 0	 85.34	 85.34	
IF	 4.91	 2.43	 5.45	 36.45	 5.42	 10.86	 1.79	 3.57	 70.88	 70.9	
R3	 4.93	 48.1	 16.08	 9.97	 356.02	 13.77	 6.37	 0	 455.24	 455.43	
R2	 1.54	 0.11	 13.42	 3.12	 21.61	 105.44	 27.95	 0.34	 173.53	 173.56	
F2	 1.37	 0.03	 5.12	 2.68	 3.74	 44.94	 191.62	 5.48	 254.97	 254.98	
F1	 0.76	 0	 0.32	 1.19	 0	 5.21	 10.1	 373.45	 391.03	 391.03	
Class	Total	 46.82	 310.01	 84.75	 65.44	 443.22	 187.28	 241.22	 382.99	
Class	Changes	 19.13	 61.72	 44.96	 28.99	 87.2	 81.83	 49.6	 9.55	
Image	Difference	 1.26	 ‐27.03	 0.58	 5.46	 12.21	 ‐13.72	 13.76	 8.04	

	

	
Figure	5)	Multi‐temporal	map	using	optical	information	(A)	as	well	as	total	of	optical,	thermal	and	ancillary	information	
(B)	
	
Table	6)	 Producer	 and	 user	 accuracies	multi‐temporal	 land	 use	map	 produced	 by	 optical	 data	 alone	 and	 using	 total	
optical,	thermal	and	data	
Data	set	 Optical	 Optical,	Thermal	and	Ancillary	Data	

LU/LC	Classes	 Prod.	Acc	 Use.	Acc	 Prod.	Acc	 Use.	Acc	

Residential	Land	(RL)	 78.85	 93.18	 94.23	 92.45	
Barren	Land	(BL)	 71.79	 66.67	 88.31	 89.47	
Dairy	Farming	(DF)	 100	 100	 86.21	 87.72	

Irrigated	Farming	(IF)	 88.89	 91.14	 97.44	 79.17	

Poor	Range	(R3)	 80.28	 79.17	 100	 100	

Moderate	Range	(R2)	 89.66	 66.67	 83.1	 88.06	

Moderate	Forest	(F2)	 66.23	 82.26	 90.12	 94.81	

Good	Forest	(F1)	 100	 98.55	 97.06	 97.06	

Overall	Accuracy	 84.96	 91.60	

Kappa	 0.8274	 0.9036	

	
The	 evaluation	 of	 the	 accuracy	 of	 the	 multi‐
temporal	 land	 use	 map	 showed	 that	 in	 both	
multi‐temporal	land	use	maps	(based	on	optical	

data	 and	 total	 optical,	 thermal	 and	 additional	
data),	 the	 overall	 accuracy	 and	 Kappa	
coefficient	 increased	 (Table	 6),	 so	 that	 the	
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overall	 accuracy	 and	 Kappa	 coefficient	 of	 the	
map	 generated	 from	 optical	 data	 on	 31st	 May	
and	 2nd	 July	 increased	 from	 83.95,	 0.8158	 and	
83.79,	0.8140	to	84.96,	0.8274,	respectively.	 In	
other	 words,	 the	 accuracy	 of	 multi‐temporal	
mapping	compared	to	single‐shot	has	increased	
by	 about	 1%	 using	 optical	 data.	 The	 overall	
accuracy	and	Kappa	coefficient	of	the	generated	
map	by	optical,	thermal	and	additional	data	on	
May	 31st	 and	 July	 2nd	 increased	 from	 87.89,	
0.8610	 and	 89.65,	 0.8812	 to	 91.60,	 0.9036.	 It	
means	 that	 the	 accuracy	of	 the	multi‐temporal	
land‐use	map	has	increased	by	about	2%	using	
optical,	thermal	and	additional	data.	
	
Discussion	
The	 results	 showed	 that	 the	 overall	 accuracy	
and	 Kappa	 coefficient	 of	 the	 land	 use	 data	
obtained	 from	 Landsat	 8	 optical	 data	 varies	
from	 83.95%	 and	 0.8151	 in	 late	 spring	 to	
74.22%	 and	 0.7042	 in	 late	 fall,	 respectively	
(Table	2).	This	finding	shows	that	the	accuracy	
of	the	map	produced	in	the	wet	season	is	more	
accurate	 than	 the	 dry	 season,	which	 is	 similar	
to	 the	 findings	of	Kantakumar	and	Neelamsetti	
and	 Zoungrana	 et	 al.	 [16,	 35].	 The	 accuracy	 of	
separation	 F1,	 F2,	 and	 RL	 is	 the	 highest	 in	 all	
four	 images.	 The	 distinctive	 features	 and	
spectral	 resolution	 of	 the	 forest	 class	 are	
narrowly	 segregated	 due	 to	 less	 spectral	
mixing,	while	the	separation	of	agricultural	and	
rangelands	 classes	 is	 less	 accurate	 due	 to	 the	
spectral	similarity	of	these	classes	increases	the	
probability	 of	 spectral	 mixing	 and	 thus	
increases	 the	 misclassification	 [3].	 With	 the	
addition	 of	 thermal	 data	 (thermal	 infrared	
band:	 TRS1)	 to	 optical	 data	 and	 land	 use	
classification,	 the	 overall	 accuracy	 and	 Kappa	
coefficient	 are	 slightly	 reduced	 in	 the	 map	 of	
the	early	spring	image,	but	from	early	summer	
to	 early	 fall	 it	 increased	 so	 that	 in	 the	 early	
summer,	overall	accuracy	and	Kappa	coefficient	
increased	 by	 2.54%	 and	 0.0292,	 respectively,	
and	 by	 early	 fall,	 it	 increased	 by	 4.88%	 and	
0.056,	 respectively	 (Table	 3)	This	 is	 related	 to	
the	difference	in	brightness	temperature	of	the	
of	 land	 use	 in	 different	 seasons	 (Figure	 4),	 so	
that	from	late	spring	to	early	fall,	the	difference	
in	brightness	temperature	increases,	so	in	early	
fall,	 the	 difference	 in	 brightness	 is	 greater	 in	
land	 use,	 and	 facilitates	 the	 classification.	
Increasing	the	 land	use	accuracy	by	combining	
optical	 and	 thermal	 information	 has	 been	
reported	in	several	studies	[9,	25,	33,	35].	In	fact,	the	

use	 of	 thermal	 data	 along	 with	 other	 spectral	
bands	to	produce	a	land	use	map	facilitates	the	
classification	with	similar	spectral	properties	or	
similar	phenologies	[10].	On	the	other	hand,	with	
the	 addition	 of	 thermal	 information,	 the	
accuracy	 of	 classification	 of	 BL	 and	 DF	 has	
increased	more	than	others.	
Several	 studies	 have	 reported	 that	 the	 use	 of	
additional	 information	such	 as	 elevation,	 slope	
and	 vegetation	 indices	 will	 increase	 the	
classification	 accuracy	 [17,	 18,	 34].	 In	 the	 current	
study,	 with	 the	 addition	 of	 the	 NDVI	 index	 to	
the	 optical	 and	 thermal	 data,	 only	 in	 the	 late	
spring	 image,	 the	 overall	 accuracy	 and	 Kappa	
coefficient	 increase	 slightly,	 but	 in	 the	 other	
images,	 the	 accuracy	 is	slightly	reduced	(Table	
3).	This	is	due	to	the	fact	that	in	late	spring,	the	
R3,	 due	 to	 its	 phenological	 timing,	 still	 has	
chlorophyll	 content,	 and	 therefore,	 by	 adding	
NDVI	 it	 provides	 a	 complete	 set	 of	 optical	 and	
thermal	 information,	 user	 and	 producer	
accuracy	of	this	land	use	increases	significantly,	
but	with	the	arrival	of	 the	summer	season,	 the	
vegetation	 is	dry	 or	decreasing.	 As	 a	 result,	 in	
images	 of	 early	 summer	 to	 early	 fall,	 the	
increase	 in	 the	 accuracy	 increased	 slightly	 by	
adding	NDVI	index.	On	the	other	hand,	rain‐fed	
farming	lands	dry	in	summer,	then	adding	DEM	
data	 leads	 to	 interfacing	 of	 uncovered	 uses	
(rain‐fed	cover	and	dry	land)	and	thus	reduces	
the	accuracy	of	the	land	use	mapping.	By	adding	
DEM	 to	 the	 optical	 and	 thermal	 data,	 the	
accuracy	 of	 land	 use	 classification	 increases	
significantly,	 so	 that	 the	 overall	 accuracy	 rises	
from	 about	 1%	 in	 late	 spring	 to	 about	 4%	 in	
early	fall	(Table	3).	Sesnie	et	al.	[36],	in	a	study	in	
Nicaragua's	 tropical	 forest	 used	 a	 DEM	 also	
reported	 an	 increase	 in	 the	 accuracy	 of	 the	
entire	 land	 use	 classification	 by	 about	 5%.	
Among	 the	 land	 use	 classes,	 the	 use	 of	 DEM	
significantly	 increased	 the	 user	 and	 producer	
accuracy	of	agricultural	classes.	
Among	 the	 single‐shot	 maps	 produced	 by	
optical	 data	 (Figures	 4‐A,	 4‐B,	 4‐C,	 and	 4‐D),	
images	 of	 the	 late	 spring	 and	 early	 summer	
were	 respectively	 with	 overall	 accuracy	 and	
Kappa	 coefficient	 of	 83.95%,	 0.8158	 and	
83.79%,	0.8140	had	the	highest	accuracy	(Table	
3).	 By	 adding	 thermal	 data	 and	 additional	
information	 (NDVI,	 DEM,	 slope	 and	 slope	
aspect)	 to	 optical	 data	 (Figures	 4‐A1,	 4‐B1,	 4‐
C1,	 and	4‐D1),	 the	 overall	 accuracy	 and	Kappa	
coefficient	 in	 the	 same	 images	 increased	 to	
87.89,	0.8610,	and	89.45,	87.90	(Table	3)	which	
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were	 the	 highest	 overall	 accuracy	 and	 Kappa	
coefficient	among	other	land	user	maps.	
	
Conclusion	
In	the	present	study,	the	application	of	thermal	
data	 and	 additional	 information	 (NDVI,	 DEM,	
slope	 angle,	 and	 slope	 aspect)	 along	 with	
optical	data	as	well	as	multi‐temporal	images	to	
increase	the	accuracy	and	improve	the	accuracy	
of	 land	use	classification	was	 investigated.	The	
results	 showed	 that	 thermal	 data,	 slope	 and	
elevation	had	a	significant	role	in	increasing	the	
accuracy	 of	 land	 use	 classification,	 increasing	
the	overall	 accuracy	by	about	3‐10%	from	 late	
spring	to	early	fall.	Given	the	mountainousness	
nature	 of	 the	 area,	 slope	 and	 elevation	
information	 increased	 the	 accuracy	 of	
agricultural	 classes,	 since	 agricultural	
development	 is	 limited	 to	 climatic	 conditions	
and	 the	 possibility	 of	 agricultural	 operations,	
which	are	related	to	topography	(elevation	and	
slope).	 Among	 the	 user	 maps	 derived	 from	
single‐shot	 images,	 the	 total	 accuracy	 and	
Kappa	coefficient	in	the	wet	season	(late	spring	
and	 early	 summer)	 were	 higher	 than	 the	 dry	
season	 (late	 summer	 and	 early	 spring).	 The	
results	 of	 the	 integration	 of	 wet	 season	 maps	
indicated	 that	 the	 map	 obtained	 from	 the	
integration	 of	 optical	 data	 as	 well	 as	 the	 total	
optical	 data,	 thermal	 data	 and	 additional	
information	 (NDVI,	 DEM,	 slope	 and	 slope	
aspect)	 increases	 slope	 the	overall	 accuracy	of	
the	 classification	 by	 about	 2%.	 Generally,	 the	
highest	 accuracy	 of	 the	 maps	 produced	 using	
optical	data	was	with	83.95%	was	related	to	at	
the	 late	 spring,	 while	 using	 all	 strategies	 for	
increasing	 the	 accuracy	 of	 classification,	 the	
highest	overall	accuracy	(95.61)	was	related	to	
multi‐temporal	images	of	wet	season.	
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